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Title

Acoustic timbre recognition

Synonyms

Sound source identification; Auditory recognition

Definition

Timbre is what allows a listener to distinguish two sounds that have otherwise the same
subjective pitch, loudness, location, and duration. For instance, when orchestral
musicians tune at the beginning of a concert, they all play the same note, but one can still

tell the difference between instruments. This is largely because of timbre.

Detailed Description

The standard definition of timbre has several shortcomings. First, it says what timbre is
not, rather than what it is. Second, it relates to the comparison between two sound
tokens, whereas a more useful function for hearing is to associate a single timbre
directly with a sound source (the timbre of the piano, the timbre of the voice of a friend).
Perhaps as a consequence, there is still a lively debate about the acoustic features,
mental representations, and neural mechanisms underlying timbre recognition. Here,
we first outline the basic principles that make timbre such a powerful potential cue for
sound source identification. Then we put forward two possible approaches to timbre,
which we follow into the fields of acoustics, perception, neural mechanisms, and

computational applications.

Why do different sound sources produce different timbres?

Sound sources are physical objects that come in all shapes and sizes. Sound is produced

when some energy makes the object vibrate. The vibrations spread around the source,

which then propagate to the air and reach the ear of a listener in the form of pressure
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waves (Figure 1). Simple physics shows that the wave pattern at the ear can contain a lot
of information about what happened at the source (Helmholtz, 1877). For instance, if the
energy input was brief, such as a door knock, the chances are that the sound itself will be
brief and have most of its energy concentrated around the time of the knock. After the
knock, the way the door continues to vibrate is closely related to its geometry, because
some wave patterns are consistent with some geometries and some are not. One such
rule is that waves with low frequency and thus a long wavelength are not stable within
small objects. Thus, the proportions of different frequency components that combine to
make the sound of a door knock will be constrained by the size of the door. Other, more
complex rules apply, depending on the shape of the object, the nature of the materials

involved, and so on.

Being able to decode the intricate links between wave patterns and sound sources is
extremely useful for humans and other animals. It allows the auditory system to serve as
a warning sense, for instance to identify sound-producing objects that are out of sight.
For people, it is also the very basis of spoken language: vowels and consonants are
produced by modulating the shape of the vocal apparatus, resulting in changes in timbre

that are the building blocks of oral communication.

Dimensions versus features

There is no consensus on what makes timbre recognition possible for human listeners.
To outline current controversies, it is useful to consider two opposite viewpoints
(Figure 2). A first view is that timbre is composed of a reasonably small number of
perceptual dimensions, which are subjective descriptions of sound just as pitch or
loudness. Such dimensions must be metameric, in that several different sounds may

project to the same point on the dimension.

A second view is that timbre recognition relies on the distinctive features of a given
sound source, learnt through experience and selected amongst a very large space of
potential features. The grain of a friend’s voice may be unique, which is what allows us

to recognize her instantly. Such features would be conceptually different from
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dimensions in that a feature does not necessarily apply to all possible sound sources; in
fact, it is precisely because it is unique to only a few sources (or even a single source)

that it could be efficient for recognition.

It is likely that a full account of timbre will lie somewhat in between these two simplified
hypotheses. However, for clarity, we continue to contrast each approach for different

aspects of timbre research.

Sound representations

To investigate timbre, it is useful to represent sound visually. Classically, this has been
done with tools such as the trace of the pressure waveform over time; the spectral
analysis of component frequencies through e.g. Fourier analysis; or spectro-temporal
transformations such as the short-term Fourier transform or wavelet analyses. More
recently, computational models that aim to mimic peripheral or central auditory

processing have been suggested (e.g. Patil et al,, 2012).

In the “dimensions” approach, summary statistics are computed on sound
representations to define what are referred to as descriptors of timbre. For instance, the
center of mass of all frequency components of a sound produces a single number that is
correlated with the apparent “brightness” of a sound (McAdams et al., 1995). In the
“features” approach, the tendency is rather to maximize the richness of the
representation, by including complex spectro-temporal selectivities. Such a feature-
based representation need not be orderly. It can be over-complete with thousands of
partially overlapping features, or sparse, in the sense that a given sound would only
activate a small number of features within that large possible space (Hromadka and

Zador, 2009).

Perceptual data

The basic aim of the dimensions approach is to uncover the nature and number of the

perceptual dimensions underlying timbre. To this effect, statistical techniques based on

multidimensional scaling have been used: a pair of sounds is presented to the listener,
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who has to rate how similar to each other the two sounds seem. This is repeated for all
possible pairs within a given sound set. Then, the similarity judgments are treated as
perceptual distances and used to obtain the dimensionality and geometry of the
corresponding mental representation. For musical instruments, classic studies point
towards two to three main dimensions: one related to the attack time, one related to the
spectral centre of mass, and one additional dimension that is less consistently observed
(Grey, 1977; McAdams et al., 1995). More recent investigations, using both
multidimensional scaling and verbal descriptions, suggest five main dimensions with

more complex interpretations (Elliott et al., 2013).

In the features approach, the focus is not on similarity but rather on the recognition of
the sound source. Again using musical instruments, fast recognition times have been
observed (Agus et al., 2012) and recognition was found to be preserved even for
severely impoverished signals (Suied et al, 2013). Moreover, recognition was faster and
more robust for highly familiar sources such as the human voice, an observation that
could not be traced back to simple acoustic dimensions (Agus et al., 2012). These results
strongly suggest the existence of diagnostic features that were learnt by listeners,

through experience, to recognize e.g. voices in a robust and efficient manner.

Neural bases

Neural correlates of generic timbre dimensions have been investigated with brain
imaging. Using an EEG paradigm to probe sensory memory known as mismatch
negativity, it has been found that timbre dimensions such as brightness or onset time

could each be represented separately within auditory cortex (Caclin et al., 2006).

From the features perspective, single-unit recordings have uncovered a rich variety of
selectivities, at many levels of the auditory system, often without any obvious ordering
principle (other than by frequency). Using linear analysis techniques such as reverse
correlation, spectro-temporal receptive fields have been derived. Various spectral and
temporal modulation preferences have been observed e.g. in primary auditory cortex
(Depireux et al., 2001). Adding a nonlinear component to the analysis adds another layer

of complexity (Machens et al.,, 2004). Furthermore, the neural encoding of timbre may
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interact with supposedly independent sound characteristics, such as pitch or location

(Bizley et al., 2009).

A further question is whether the identity of a source will be encoded by the activity of a
wide network shared by many sound sources, or by the activity of only a small network
specifically tuned to that source category. Evidence has been put forward for both
models. Using fMR], the identity of a sound source can be inferred from distributed
activity (Staeren et al, 2009). At the same time, there are clear indications of localized
brain areas specialized for familiar sound sources such as the human voice (Belin,

2006).

Timbre recognition by machines

There are several applications for acoustic timbre recognition, such as speaker
identification or music information retrieval. Even though the techniques used are fast-
evolving and a detailed description is beyond the scope of this section, it is interesting to
note that the dimensions vs. features contrast can also be seen in the architectures of the

computational systems.

Automatic speech recognition, which can to some extent be viewed as a timbre-decoding
exercise, has a long tradition of performing classification on a small number of generic
coefficients (e.g. mel-frequency cepstrum coefficients and their variants, Hermansky,
1990). For musical instruments, a descriptors-based approach has been directly
inspired by the perceptual dimensions of multidimensional studies, with a reasonably
small number of explicit descriptors (Peeters et al,, 2011). However, other systems exist
that are based on feature generation from a huge potential feature space, followed by ad
hoc selection for a given classification task (Coath and Denham, 2005; Pachet and Roy,
2009). For musical-instrument classification, machine-learning algorithms applied on a
high-dimensional auditory model representation have also been successfully

demonstrated (Patil et al,, 2012).

Perspectives
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The outstanding issues for timbre research will probably benefit from considering the
various strategies available to a listener. For instance, when asked for subjective
distance judgments, the most reasonable thing to do may be to abstract common
dimensions to a sound set, and then use those for the comparisons. However, when
asked to recognize a source as fast as possible, the mere presence of a diagnostic feature
may be sufficient. The set of useful timbre dimensions or features can also depend on
the task: for a same set of spoken words, different strategies are used if listeners are
asked to identify the speaker or report the word content (Formisano et al., 2008).
Finally, the very neural representation of timbre may be dynamically tuned to the
immediate acoustic context, through rapid plasticity (Fritz et al., 2003). A fundamental
reason that makes timbre so elusive may therefore be that timbre recognition is a
profoundly adaptive mechanism, able to create and use opportunistic strategies that

depend on the sounds and task at hand.

Cross-References/Related terms (optional)

Pulse Resonance Sounds; Auditory Event Related Potentials
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Figure legends

Figure 1. Visual representations of four sounds with the same duration, loudness and
pitch, so only differing by timbre. Each panel displays a time-frequency analysis derived
from an auditory model (see Agus et al.,, 2012 for details). Briefly, color indicates the
pattern of energy within frequency channels (y-axis) as it evolves over time (x-axis).
The top trace is the corresponding pressure waveform. The right-hand trace is the
average energy over time. The two instruments illustrate classic dimensions of timbre:
depending on the sound source and how it is excited, the attack time can be fast (piano)
or slow (trombone); the spectral centre of mass can be high (piano) or low (trombone).
The two vowels illustrate that other, possibly more complex features may also be used

to distinguish e.g. vowels from instruments, or vowels from each other.

Figure 2. Schematic representation of the dimensions approach versus the features
approach for timbre. A) For the dimensions approach, all different timbres can be
projected in a low-dimensional space of continuous dimensions. B) For the features
approach, each timbre is defined by a set of distinctive features among a very large and

unordered set of possible features.



Figure 1

piano trombone
~ 1 ~ 1
- I
=3 =3
g g
T T
0.1 0.1
time (ms) 250 time (ms) 250
voice /i/ voice /al/
. N
I I
= =
g g
' &

0.1 0.1

time (ms) 250 time (ms) 250

265



Figure 2

Dimension 2

Dimension 1

10

\

Features




