
Fast recognition of musical sounds based on timbre

Trevor R. Agusa)

Laboratoire de Psychologie de la Perception (UMR CNRS 8158), Université Paris-Descartes & Département
d’études cognitives, Ecole normale supérieure, 29 rue d’Ulm, 75005 Paris, France

Clara Suied
Laboratoire de Psychologie de la Perception (UMR CNRS 8158), Université Paris-Descartes & Fondation
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Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds.

However, there is surprisingly little quantitative evidence to characterize this fundamental ability.

Here the speed and accuracy of musical-sound recognition were measured psychophysically with a

rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical

instruments and sung vowels. In a first experiment, reaction times were collected for three target

categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible

to members of a target category while withholding responses to distractors (a diverse set of musical

instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices.

In a second experiment, voices were recognized among strings and vice-versa. Again, reaction

times to voices were faster. In a third experiment, auditory chimeras were created to retain only

spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly

as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-

sound recognition based on selectivity to complex spectro-temporal signatures of sound sources.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.3701865]
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I. INTRODUCTION

Everyday experience shows us that human listeners

have a remarkable ability to recognize complex sound sour-

ces, such as voices, animal sounds, or musical instruments.

The benefits of this ability are obvious: distinguishing prey

from predators rapidly and accurately, even before they enter

the field of vision, would provide a real selective advantage.

The present set of experiments is concerned with the psycho-

physical characterization of natural sound recognition in

order to better understand its acoustical underpinnings.

Timbre is an important factor in sound recognition as, by

definition, it allows us to distinguish two sounds that have oth-

erwise the same pitch, loudness, and duration (American

Standards Association, 1960; Plomp, 1970). That leaves a

large number of potential acoustical cues to timbre. For exam-

ple, the spectrum can change independently of pitch, loudness,

and duration, which make it a likely contributor to timbre

(Helmholtz, 1954/1877). Summary statistics based on the

spectrum have been proposed as timbral dimensions, such as

the spectral centroid or “brightness” for musical instruments

(Krimphoff et al., 1994) or formant positions for voices (Fant,

1960). An acoustic cue that is distinct from spectrum is the

shape of the temporal envelope (Grey, 1977; Patterson, 1994).

A typical subset of the natural sounds encountered in

everyday life will differ in those plus many other physical

attributes, so it is difficult to quantify the relative importance

of all potential cues for perception. A common approach

used is multidimensional scaling (Grey, 1977), in which lis-

teners’ dissimilarity ratings are used to infer the perceptual

dimensions underlying the perceived similarity. The tech-

nique has uncovered underlying perceptual dimensions for a

variety of sounds, including musical instruments (McAdams

et al., 1995) and environmental sounds (Gygi et al., 2007).

However, the interpretation of some of these dimensions

remains challenging and may vary with the sound set used

(Burgoyne and McAdams, 2007; Donnadieu, 2007).

In the present study, we used a different method, the

measurement of reaction times, to investigate timbre percep-

tion. Reaction time measurement, also known as mental chro-

nometry, is a well-established psychophysical technique for

the study of hearing (Donders, 1868/1969; Luce, 1986) and

recently it has been applied to tasks involving natural sounds

(Ballas, 1993; Suied et al., 2010). Noticeably, the technique
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has been instrumental in visual research when investigating

natural scenes (Thorpe et al., 1996). The reason is that reac-

tion times provide information about stimulus processing

even when the task is far above threshold, as is the case when

recognizing natural objects. For example, in the visual case,

observers responded with 96% accuracy to photographs that

included either faces or animals in natural scenes (Rousselet

et al., 2002). The accuracy remained high (95%) even when

the photographs were inverted. However, faces and animals

were detected significantly more slowly in the incorrect orien-

tation. In addition, the speed of processing produces con-

straints on the type of neural processing involved in the

recognition process (Thorpe et al., 1996). These visual studies

illustrate how the reaction times continue to be useful meas-

ures even for natural stimuli that are categorized too accu-

rately for a meaningful use of more traditional sensitivity

measures, such as d0 (Macmillan and Creelman, 2005).

The experiments measured the speed and accuracy of

sound recognition for a rich set of acoustically controlled nat-

ural stimuli. For Experiments 1 and 2, the sound set com-

prised a variety of musical instruments and the human voice

(sung vowels). All sounds were recordings of real sources

(Goto et al., 2003) but this particular selection of sounds

enabled us to balance across categories important auditory

features, such as pitch, loudness, and duration. Thus, only tim-

bre cues remained for categorization. Our data consistently

showed faster responses to voice stimuli in categorization

tasks. Experiment 3 aimed at investigating the acoustic sub-

strate for fast voice recognition, by using acoustic chimeras of

natural sounds. Finally, a model of acoustical similarity was

developed to check whether generic spectro-temporal features

could explain the behavioral results.

II. EXPERIMENT 1: NATURAL SOUND RECOGNITION

This experiment measured how quickly listeners could

recognize sets of complex sounds. Listeners were asked to

respond to target sounds (either voice, percussion, or strings)

as quickly as possible while ignoring interspersed non-target,

“distractor” sounds, which were a diverse group of musical

instruments. Figure 1 illustrates the stimulus set. Loudness,

duration, and pitch range were equated across categories and

no other obvious acoustic feature seems unique to a particular

target or to distractors. In addition, there were several exem-

plars of each target and distractor, so that listeners had to react

to a wide range of sounds, not just features unique to one par-

ticular recording.

A. Stimuli

Recordings of single musical notes were extracted from

the RWC Music Database (Goto et al., 2003), using the notes

designated “medium-volume” and “staccato,” with all 12

semitones between A3 and G#4. There were three categories

of target stimuli, namely voice (male voice singing vowels /a/

or /i/), percussion (marimba and vibraphone), and strings (vio-

lin and cello). The distractor stimuli were bassoon, clarinet,

oboe, piano, saxophone, trumpet, and trombone. Since the

range of the oboe does not include A3, a substitute A3 was

generated by resampling the A#3. The resulting stimulus

sounded no less natural than its recorded counterparts. The

stimulus set thus comprised 156 different samples, with a tar-

get category represented by 24 different samples (12

pitches� two target instruments). Each note was edited into a

separate sound file, truncated to 250-ms duration, and normal-

ized in root-mean-square (rms) power. For the truncation, the

start of each sound file was taken as 5 ms before the envelope

of the stimulus was greater than 20 dB less than the peak

power, the envelope being calculated as the rectified wave-

form smoothed by a 2nd-order Butterworth low pass filter at

140 Hz. The onsets were then smoothed with a 5 ms cosine

ramp and the offsets were smoothed with a 50 ms cosine ramp.

B. Procedure

A trial was initiated by the participant holding down a

response button. After a pause of random duration

(50–850 ms), a single sound was presented. The task was a

“go/no-go”: the stimulus could be either a target or a dis-

tractor; listeners were asked to respond to the targets by

releasing the button as fast as possible but only to the target

sounds, not to respond to the distractors. If a sound was

ignored for 3000 ms, the next trial would be triggered

FIG. 1. (Color online) A representa-

tive sample of the stimuli used in

Experiment 1. The three target cate-

gories on the left (voice, percussion,

and strings) were each presented

interspersed with the same set of dis-

tractors on the right. Each panel

shows the STEPs for each sound

type at pitch D4, with the envelope

on the top and the long-term average

spectrum to the right. In the experi-

ments, pitches from A3 to G#4 were

used for each sound type.
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automatically; otherwise, the listener would again depress

the response button to trigger the next trial. No feedback

was provided. Blocks were run for the three categories of

target stimuli (voices, percussion, or strings). The orders of

these blocks were counterbalanced in a Latin square across

the listeners. Each block was formed from 96 target trials

(12 notes� 2 target instruments� 4 presentations) and 84

distractor trials (12 notes� 7 distractor instruments� 1 pre-

sentation). We also collected simple reaction times (simple

RTs) in separate blocks: only target stimuli were presented

and the listener was asked to respond as quickly as possible

on every single trial. Anticipations were discouraged by the

large random variation of the silent pause duration between

sounds. In each of these blocks, the three types of target

were interleaved, with each stimulus presented just once,

resulting in 72 trials per block (12 notes� 6 target

instruments� 1 presentation). The go/no-go and simple RT

blocks were alternated, starting and finishing with simple

RT blocks. Thus there were 4 simple RT blocks in total,

resulting in 96 target trials for each of the 3 target catego-

ries, the same as for the go/no-go task.

C. Apparatus

Stimuli were played through an RME Fireface sound-

card at a 16-bit resolution and a 44.1 kHz sample-rate. They

were presented to both ears simultaneously through Sennhe-

iser HD 250 Linear II headphones. Presentation level was

70 dB(A). Listeners were tested individually in a double-

walled IAC sound booth, and responded through a custom-

made response box. The response box reported the response

time with sub-millisecond accuracy, triggered by a short

burst at 20 kHz which was presented through the sound-card

on a separate audio channel.

D. Participants

There were 18 participants (4 male and 14 female), aged

between 19 and 45 (M¼ 26 yrs). All listeners had self-

reported normal-hearing. One further listener was excluded

from the analysis because of abnormally slow reaction times

(787 ms for the go/no-go task and 512 ms for the simple RT

task), but otherwise, this listener’s data followed the same

pattern as the other listeners. All listeners gave informed

consent to participate and were compensated for their

participation.

E. Analysis

Because of the non-Gaussian shape of RT distributions,

all RTs were transformed logarithmically (Suied et al.,
2010) before calculating any statistics. This includes the

means and 95% confidence intervals displayed in the figures,

which were then converted back to linear time for presenta-

tion purposes.

F. Results

Figure 2 displays the results of this first experiment.

Mean false-alarm rates (incorrect go responses to a distrac-

tor) were low for all categories, as were misses (no-go

responses to a target), which averaged 1.8%. This shows that

listeners were highly accurate at recognizing the targets. A

repeated-measures analysis of variance (ANOVA) on the

false-alarm rates showed an effect of target type

(F2,34¼ 7.89, p¼ 0.002) with the fewest false alarms for voi-

ces (4%) and the most for strings (12%).

A repeated-measures ANOVA on the simple RTs showed

that there was a small but significant effect of instrument

(F2,34¼ 5.03, p¼ 0.01) with the voices detected marginally

slower than either percussion (mean difference¼ 8 ms,

t17¼ 2.56, p¼ 0.02) or strings (mean difference¼ 7 ms,

t17¼ 2.92, p¼ 0.01).

Recognition times had an overall log-averaged go/no-go

RT of 513 ms, with the fastest category being the voice at

448 ms. A repeated-measures ANOVA on go/no-go RTs

revealed a significant effect of instrument (F2,34¼ 27.10,

p< 0.001), with voice RTs significantly faster than percus-

sion (mean difference¼ 55 ms, t17¼ 5.13, p< 0.001), which

were in turn faster than strings (mean difference¼ 50 ms,

t17¼ 3.30, p¼ 0.004). The listeners performed the go/no-go

tasks for each instrument in different orders; adding this as a

between-subjects factor showed no main effect of order nor

any interaction with target type (p� 0.89).

G. Discussion

This first experiment shows that recognition of natural

sounds based on timbre cues, when pitch, duration, and

FIG. 2. (A) The average false-alarm rate for each target category. (B) Detection times for each target category. (C) Recognition times for the go/no-go task

for each category. In all panels, error bars show 95% confidence intervals centered on the mean. Voices were recognized faster and more accurately than other

target categories.
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power have been factored out, can occur in a few hundreds

of milliseconds. When expressed relative to simple detec-

tion, it took an extra 145 ms to recognize voice targets.

Although it would be an oversimplification to assume that

this represented the time required for recognition (Luce,

1986), it is notable that this value is less than the sound dura-

tion itself. Our results also revealed large differences

between target types, with voice responses being consider-

ably faster than either percussion or strings. The most

extreme difference (voice vs string) was 105 ms on average,

which is a large effect for RT paradigms.

Some interpretations for the voice advantage can al-

ready be ruled out. First, voices were not detected faster than

the other target types, as shown by simple RTs. Animal

sounds can be detected faster than simple artificial sounds

(Suied et al., 2010), but here the spectro-temporal complex-

ity was more closely matched across target types, which may

explain the equivalent detection times. Second, the RT dif-

ferences did not reflect a criterion change, because listeners

were both faster and more accurate for voice. This is the op-

posite of a speed/accuracy trade-off.

III. EXPERIMENT 2: VOICE-PROCESSING
ADVANTAGE

The faster RTs and more accurate recognition for voices

in Experiment 1 may reflect processing specific to voices,

but there are alternative explanations. If, for some reason,

the voice targets were more distinct from the distractor set

than the other targets, then this could explain why they were

recognized more easily. The reason for being more distinct

could relate to non-obvious acoustical cues. In addition, the

distractors were all musical instruments, so it could be con-

sidered that there was a greater semantic difference between

voice targets and distractors than between, for example,

strings targets and distractors.

Experiment 2 addressed these two alternative interpreta-

tions. The go/no-go reaction times were measured again for

voice and string targets. In some blocks, voices were targets

whereas strings were distractors. In other blocks, the reverse

was true. These two types of blocks (“paired” distractors)

thus use the same acoustic stimuli, only the instructions to

the listeners differed. This equalizes the acoustic and seman-

tic distances between targets and distractor sets. As a control,

other blocks of the experiment (“shared” distractors) used

the same distractors as in Experiment 1, for both voice and

string targets.

A. Stimuli

The stimuli were the same voice, string, and distractor

stimuli as in Experiment 1, omitting the percussion.

B. Procedure

There were four go/no-go blocks, with two types of tar-

gets (voices or strings) crossed with two distractor conditions

(paired or shared). In the paired condition, the strings were

the distractors for the voice targets and the voices were the

distractors for the strings targets. In the shared condition, the

distractors were the same seven instruments as in Experi-

ment 1, for both voice and string targets. There were four

blocks of trials, one for each pair of target and distractor con-

ditions. The two distractor conditions alternated on each

block, and pairs of blocks for each target condition were

blocked together. The ordering of the target and distractor

conditions was balanced across listeners in a Latin-square

design. For each condition, the participant listened to exam-

ples of the targets and distractors (at least 6 of each), com-

pleted a training block of 20 trials, and then completed the

main block of 192 trials comprised of equal numbers of tar-

get and distractor stimuli. For the paired distractor condition,

each main block included 4 presentations each of the 12

notes of the octave for the 2 types of sound (/a/ and /i/ or vio-

lin and cello) in random order, i.e., there were 96 target trials

and 96 distractor trials per condition per listener. For the

shared distractor condition, there were the same number of

targets and distractors, but for each distractor trial, one of the

seven instruments was selected randomly with replacement

at a pitch that was selected randomly without replacement,

with each pitch presented eight times each. No feedback was

provided.

C. Participants

There were 12 participants (9 male and 3 female), aged

between 21 and 33 (M¼ 28 yrs), with self-reported normal-

hearing. They had not participated in the first experiment.

All listeners gave informed consent to participate and were

compensated for their participation.

D. Results

Figure 3 shows the results for all four conditions. Partic-

ipants responded faster to voice targets than to string targets,

for the instruments distractors (which replicates Experiment

1) but, crucially, also for the paired distractors. RTs for the

voice targets were relatively unaffected by distractor type.

For the string targets, RTs were faster for voice distractors.

A repeated-measures ANOVA showed that there was a

significant effect of target type (F1,11¼ 48.77, p< 0.001),

distractor condition (F1,11¼ 14.5, p¼ 0.003), and a signifi-

cant target–distractor interaction (F1,11¼ 43.62, p< 0.001).

FIG. 3. (A) False-alarm rates for voices and strings paired as targets and

distractors (light gray) and the equivalent data with the same distractors as

in Experiment 1 (dark gray). (B) Log-averaged response times for the same

conditions as in panel (A). The faster reaction times for voices were

observed with both paired or shared distractors.
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Paired t-tests showed that reactions to voices were faster

than to strings for the paired distractors condition, in which

voices were 37 ms faster (t11¼ 2.25, p¼ 0.05). The distractor

condition had no significant effect on the reaction times to

voice (t11¼ 1.31, p¼ 0.22). For the string instruments, RTs

with shared distractors were 77 ms slower than for paired

distractors (t11¼ 7.98, p< 0.001). A repeated-measures

ANOVA was also performed on the false-alarm rates. The

strings were categorized not only more slowly but with more

false alarms (F1,11¼ 0.01, p¼ 0.002), so the faster responses

to voices cannot be attributed to a criterion effect.

In this experiment, RTs to the voice were again faster,

even in the paired-distractors condition. In this new condition,

all target-distractor similarities (acoustical or semantic) are,

by design, exactly equated for the two target types. Thus the

faster responses to voice suggest a genuine voice-processing

advantage. The RTs to the strings depended on whether the

distractors were voices or other musical instruments. This

could stem from differences in target-masker similarity, or,

alternatively, responding to non-voice stimuli could be an

additional response strategy taking advantage of the speed

with which the voice stimuli could be categorized.

IV. EXPERIMENT 3: REACTION TIMES TO AUDITORY
CHIMERAS

Any voice-processing advantage must eventually be

traced back to acoustical features that are specific to voices.

In a last experiment, we used “auditory chimeras” to clarify

the nature of these acoustical features. RTs should be just

as fast for chimeras that contain the critical voice features,

whereas RTs should be slowed down when these features

are removed. The chimeras we used preserved either the

long-term spectral features or the instantaneous temporal

features of the voice. Spectral and temporal features were a
priori equally likely to have been used as a basis for fast

voice recognition. Vowel sounds have a specific formant

structure (Fant, 1960) visible in the spectra; they also had a

greater unsteadiness of pitch (measured as F0 variability in

STRAIGHT; Kawahara, 2006), which would be captured as

part of the temporal features.

We created the chimeras using an auditory model.

Briefly, a chimera with spectral features of the voice and

temporal features of strings was obtained by simulating

peripheral auditory filtering for a sample in each category,

and by imposing the average energy per auditory channel of

the voice sample onto the string sample. We introduced a

notation for such chimeras, which for this example would be

S-voice/T-string (Spectral/Temporal). Sound demonstrations

are available online (http://audition.ens.fr/chimeras). The

spectral features convey primarily the average spectrum,

which includes the distinctive formants (resonances) of the

instruments and vowels. The temporal features convey all

other acoustic cues, including the amplitude envelope,

fundamental-frequency unsteadiness, and temporal fine

structure. The design of these chimeras resembles the

hybrids of Grey and Gordon (1978), except that their hybrids

were resynthesized from time-varying pure tones, whereas

we preserved the natural temporal structure.

Four types of chimeras were chosen as targets: S-voice/

T-string, S-string/T-voice, S-string/T-percussion, and S-per-

cussion/T-string. The natural voice was also included as a

fifth target category for comparison. Distractors were either

the same musical instruments as in Experiment 1, or chime-

ras obtained by random pairings of these instruments.

A. Stimuli

A peripheral auditory model was used to exchange spec-

tral and temporal features for pairs of sounds used in Experi-

ment 1. The first sound of a pair was passed through a

gammatone filter bank (Patterson et al., 1995) and the rms

long-term average power was measured for each frequency

band, estimating its excitation pattern. The second sound of

the pair was passed through the same filter bank, but gains

were applied to each channel so that the resulting excitation

pattern would match that of the first sound. All channels were

then summed to obtain the chimera. Thus the chimera had the

spectral excitation pattern of the first sound and the temporal

details of the second sound. The filter bank had 60 ERB-wide

filters and center frequencies distributed evenly on the ERB

scale (Glasberg and Moore, 1990) from 100 Hz to 15.8 kHz.

There were four types of targets using chimeras: voice /a/ and

cello; voice /i/ and violin; cello and marimba; violin and

vibraphone. The human singing voice was also included for

comparison with Experiment 1. All target types are summar-

ized in Table I. There were two types of distractors, either (1)

the unprocessed distractors used in Experiment 1 or (2) chi-

meras distractors, with each distractor instrument being used

exactly once as the temporal structure and once as the spectral

structure.

B. Procedure

There were 10 go/no-go blocks (5 sets of targets� 2 sets

of distractors), each of which was equivalent to the go/no-go

blocks in Experiment 1 except for the choice of targets and

distractors. Before each block, the participant listened to

examples of the targets and distractors (at least six of each)

until they considered they could distinguish them. Then, in

the main block, the listener performed the same go/no-go

task as Experiment 1 on these target and distractor stimuli.

There were five blocks presented in each of two sessions.

These were balanced as much as possible, such that, within

TABLE I. The five target categories used in Experiment 3. Each target cate-

gory consisted of two different sounds. For the natural voice, the same two

unprocessed vowel sounds were used as in Experiments 1 and 2. The other

four target categories each consisted of pairs of chimeras, formed from com-

bining the spectrum (S) of one instrument or voice with the temporal struc-

ture (T) of the other. (See text and online demonstrations for details.)

Target 1 Target 2

Label Spectral Temporal Spectral Temporal

Natural voice /a/ /a/ /i/ /i/

S-strings/T-Voice cello /a/ violin /i/

S-voice/T-strings /a/ cello /i/ violin

S-percussion/T-strings marimba cello vibraphone violin

S-strings/T-percussion cello marimba violin vibraphone
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each session, each of the five target types was used in each

session, and either two or three of the types of distractors

were chimeric; the ordering of the blocks was otherwise ran-

dom. No feedback was provided. At the start of the first ses-

sion, there was a brief training session, which consisted of

40 go/no-go trials selected at random from the ten condi-

tions. At the start of the second session, there was a single

block measuring simple RTs, in which all 120 target stimuli

(5 target categories� 2 target types� 12 pitches) were pre-

sented once each.

C. Participants

There were 9 participants (2 male and 7 female), aged

between 20 and 31 (M¼ 23 yrs). All listeners had self-

reported normal-hearing. They had not participated in either

of the two previous experiments. Three further participants

were excluded because they were unusually slow in the go/

no-go task. Their individual results, averaged over all go/no-

go conditions, were 708–990 ms, compared to the other lis-

teners’ 406–646 ms. However, their results followed similar

trends to those of the other listeners. All listeners gave

informed consent to participate and were compensated for

their participation.

D. Results

Figure 4 shows the results for Experiment 3. A repeated-

measures ANOVA was performed on the total false alarms

(combined across the two types of distractor). There was no

significant effect of target type (F4,32¼ 1.339, p¼ 0.37),

although the trend was again for fewer false alarms for the

natural voice. Importantly, false-alarm rates for the chimeras

were comparable to those of the natural instruments in

Experiments 1 and 2, as were misses (here, averaging 2.7%).

Thus, listeners did not appear to have difficulty recognizing

the chimeras per se.

Simple RTs ranged between 284 and 304 ms. A

repeated-measures ANOVA showed a main effect of target

type (F4,32¼ 7.54, p< 0.001). Post hoc comparisons with

Bonferoni corrections found just one significant difference:

S-string/T-percussion was detected faster than S-percussion/

T-string (p¼ 0.004).

For the recognition task, the fastest go/no-go RTs were

observed for the voice stimuli (431 ms). All other chimeras

displayed slower RTs (513–567 ms). A repeated-measures

ANOVA showed an effect of target type (F4,32¼ 30.68,

p< 0.001) but no effect of distractor type (F1,8¼ 1.06,

p¼ 0.33) nor any target-distractor interaction (F4,32¼ 0.51,

p¼ 0.73). Post hoc comparisons with Bonferoni corrections

showed that the responses to the voice stimuli were signifi-

cantly faster than each of the morphed stimuli (p� 0.001),

but there were no other significant differences.

This experiment shows that neither long-term spectral

features nor temporal features are sufficient to afford a fast

recognition time. Even though all participants reported that

the chimeras sounded voice-like (see also the online demon-

stration) and showed accuracy in their identification, listen-

ers were nevertheless slower to recognize them. It should be

noted that it is not possible to present temporal or spectral

features in isolation: sounds must have both temporal and

spectral components, which will inevitably produce compet-

ing cues in the case of chimeras. Still, the results suggest

that neither formant-structure nor pitch-trajectory alone is

sufficient for fast voice processing.

V. ACOUSTIC ANALYSES

We created a model of acoustic similarity to investigate

systematic differences between the sound categories used in

the behavioral experiments. It was based on the time-

frequency distribution of energy for each sound, after simu-

lation of peripheral auditory filtering. In addition, we

allowed time-warping to compensate for possible misalign-

ments between features. A pairwise distance was computed

between samples of all sound sources on the same pitch, for

all 12 pitch values, and then normalized and averaged. This

relatively simplistic model does not include all aspects of the

acoustics that might be relevant to perceived similarity, but

serves to investigate whether faster responses to voice in

FIG. 4. (A) The false-alarm rates for each target category split according to

the distractor condition, either natural distractors (dark gray) or chimeric

distractors (light gray). (B) Detection times for each target category. (C)

Recognition times for each target category. For all panels, the error bars are

95% confidence intervals centered on the mean (calculated using log RTs).

Chimeric voices were accurately recognized, but not as fast as natural

voices.
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Experiments 1 and 3 could be at least partly explained by

confounds in the basic acoustics.

A. Methods

Spectro-temporal excitation patterns (STEPs; Moore,

2003) were generated, which aim to simulate the distribution

of energy across time and frequency after cochlear filtering.

Each note for each instrument was first padded with 50-ms

silence before and after. Then, to represent the transfer func-

tion of the middle ear, the waveforms were passed through

two 1st-order Butterworth filters (i.e., only �6 dB/octave),

forming a bandpass filter with cut-off frequencies of 400 and

8500 Hz. The resulting waveform was passed through a 64-

channel ERB-spaced gammatone filter bank (Patterson et al.,
1995) with center frequencies ranging from 100–20 630 Hz.

Each of the outputs was compressed by taking the square

root, then smoothed by a 2nd-order Butterworth low pass fil-

ter at 20 Hz, and resampled at 100 Hz to form a concise rep-

resentation of the STEP.

A distance metric was calculated for all pairwise combi-

nations of instruments at each pitch. The metric was based

on the mean unsigned difference between the time-slices of

two STEPs. A dynamic time-warping algorithm (Sakoe,

1978) was implemented to stretch pairs of STEPs in the time

domain as necessary to minimize the total difference

between them. There was no restraint on the slope of the

time warp, except that stretching the STEPs was indirectly

penalized by the additional time-slices comparisons which

further contributed to the total difference. For each pair of

instruments, the 12 distances calculated at each pitch were

averaged, then normalized to be on a scale from 0–1. An

“average similarity” between targets and distractors was cal-

culated by taking the mean for all target-distractor compari-

sons and subtracting it from 1 so that larger values represent

greater similarity.

B. Results

Figure 5(A) shows the resulting acoustical dissimilarity

distance matrix. The structure of the matrix is quite complex,

with marimba and saxophone producing the largest dissimi-

larity, while trumpet and oboe were most similar. The acous-

tical similarity measure can account for some but not all

features of the behavioral results. Figure 5(B) shows the go/

no-go RT for each target instrument plotted against its

target-distractor dissimilarity, calculated as its mean distance

from each of the seven distractor instruments. The four

instruments followed the expected trend, that the faster RTs

were triggered by instruments that were more acoustically

distinctive from the distractors. But, importantly, the voices

did not fit into this pattern. In terms of acoustical dissimilar-

ity, the /a/ was comparable to the cello, and the /i/ was com-

parable to the mean of the two percussion instruments (the

difference between the vowels likely due to their respective

spectral formants). However, go/no-go RTs for the two vow-

els were similar to each other and noticeably faster and more

accurate than for all the instruments. In fact, /a/ had faster

RTs than /i/ (439 ms versus 457 ms; t17¼ 4.23, p¼ 0.001),

which is the opposite of what would be predicted from their

acoustical dissimilarity from the distractors. Thus the faster

and more accurate responses to the voice stimuli are not

accounted for by basic acoustical features.

VI. GENERAL DISCUSSION

A. Fast recognition of natural sounds and potential
neural codes

We measured behavioral recognition time for a variety

of sound categories matched for pitch, loudness, and dura-

tions. Fast and accurate recognition was observed, in spite of

the complexity of the stimuli. Listeners also had to react to

several exemplars of a category, within a large variety of dis-

tractors, so idiosyncratic features of the recordings are

unlikely to have played a role in the results.

The RTs seen here were remarkably similar to those

observed with an analogous visual task, where participants

had to decide whether a natural image contained an animal

or not (Thorpe et al., 1996; VanRullen and Thorpe, 2001).

The distribution of RTs in the visual study had a median of

445 ms, compared to 443 ms here (with individual subject

medians ranging from 317–542 ms). Thorpe and colleagues

also estimated the earliest reliable recognition time, by bin-

ning the RT distribution and determining the first bin in

FIG. 5. (Color online) (A) Dissimilarity matrix between sound types as esti-

mated with an auditory model. The mean absolute distance between

dynamic time-warped STEPS (Moore, 2003) is represented for each sound

pair. (B) Mean go/no-go RTs of individual target instruments plotted against

their mean acoustical dissimilarity from the distractors.
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which correct detection was significantly more likely than

false alarms. This earliest recognition time for the visual

task was 225 ms (VanRullen and Thorpe, 2001). Using the

same technique, the earliest recognition in our auditory task

can be estimated as 255 ms.1

The ultra-fast recognition data in vision has been inter-

preted as evidence for a neural code based on the timing of

the first spikes (Gautrais and Thorpe, 1998; Van Rullen et al.,
1998).2 While the current data alone cannot demonstrate that

spike timing is used to process timbre, it is at least consistent

with the idea and some physiological evidence. First, there is

evidence for precise spike timing in the primary auditory cor-

tex (Heil and Irvine, 1998; Elhilali et al., 2004) as well as for

behavioral decision based on spike timing (Yang et al., 2008).

Second, it seems that timbral information (at least for artificial

vowels) is coded in the early part of the response of primary

auditory cortex neurons (Walker et al., 2011). Note that in

this argument, spike timing does not specifically refer to the

phase locking that stems from the cochlea; rather, it refers to

a potentially more widespread coding based on relative spike

timing or spike synchrony (Thorpe et al., 2001; VanRullen

et al., 2005). Further physiological and modeling evidence is

nevertheless needed to contrast meaningfully rate-based vs

time-based neural codes for sound recognition.

B. Is the voice special?

Faster responses were observed for voices in all behav-

ioral experiments, against different targets (percussion,

strings, and voice-instrument or instrument-instrument chi-

meras) with different sets of distractors (musical instruments

or instrumental chimeras). Many authors have suggested that

speech is special (e.g., Liberman and Mattingly, 1989), and

in the same vein, this result could be interpreted as behav-

ioral evidence that vocal sounds (with minimal speech con-

tent) are also special for human listeners. Inevitably, the

responses to voices have only been compared here to a lim-

ited number of targets in a limited range of distractors. How-

ever, the targets and distractors we selected represent

especially challenging conditions. The experiments were

constructed so that pitch, pitch strength, intensity, and dura-

tion could be controlled. Moreover, one of the target catego-

ries, percussion, was selected as its sharp attacks should

favor fast reactions—but still, voices were recognized faster.

Thus our data set provides a quantitative behavioral measure

showing a sizeable effect of timbre on reaction times, such

that the selective responses to the voice are particularly fast.

These psychophysical data provide a potential parallel

to neuroimaging studies investigating voice perception. In

fMRI, selectivity for the human voice was observed in

parts of the superior temporal sulcus (Belin et al., 2000;

Kriegstein and Giraud, 2004; Uppenkamp et al., 2006).

Voice-specific responses have also been observed in electro-

encephalographic (EEG) data (Levy et al., 2001; Charest

et al., 2009). It is important to note that the faster RTs for

the voice may seem to conform to intuition, but they were

not necessarily expected from the physiological evidence.

The EEG response to voices, for instance, was not especially

rapid compared to other sound categories (Levy et al., 2001;

Charest et al., 2009; Roye et al., 2010). The voice-specific

response in secondary auditory areas may in fact imply that

more processing is required for voice than less complex

sounds. Instead, that the voice was recognized faster than

other sound categories points toward a reverse-hierarchy

framework, where higher levels of representation are in fact

the most readily accessible (Hochstein and Ahissar, 2002;

Ahissar et al., 2009).

There are many potential reasons why responses to the

voice might have been faster, ranging from special treatment

of vocal stimuli (innate or learnt) at any stage in the brain to

subtle acoustical differences distinguishing the voice from

the rest of our stimulus set. A different type of explanation is

that the faster responses could stem from faster categoriza-

tion or faster processing of the response subsequent to cate-

gorization, perhaps because of additional attentional

resources recruited once the voice has been recognized

(Levy et al., 2003). All of these potential explanations are

not necessarily mutually exclusive, and the current data do

not distinguish between them.

For all such explanations, an important question to ask,

in our view, is what acoustical features can or cannot trigger

the faster responses. The current data effectively rule out

many plausible candidates, such as pitch or formants: in the

third experiment, each of the basic spectral and temporal cues

to the voice was preserved in one or another of the voice-

instrument chimeras. One set of voice chimeras preserved the

long-term average spectrum of the voice, complete with the

characteristic formants of the vowels; the other set was effec-

tively a filtered version of the voice, so reflected its envelope,

harmonic structure, temporal fine structure, harmonic-to-noise

ratios, and fundamental-frequency variabilities. Yet neither

set of chimeras triggered the faster responses. Thus it is likely

that the behavioral advantage for voices was driven by com-

plex, joint spectro-temporal patterns. Consistent with this

idea, attempts to map the auditory cortex in terms of selectiv-

ity to basic acoustic features have proven surprisingly difficult

(Nelken et al., 2008). Some of this complexity has been sum-

marized in terms of spectro-temporal receptive fields (Klein

et al., 2000; Depireux et al., 2001). One interpretation of our

observations is that the auditory system may be selective to

complex spectro-temporal features that are diagnostic for use-

ful and frequent sound sources such as the voice.

How would such complex selectivities be formed? It is

feasible that the voice and the auditory system have, to some

extent, co-evolved to the benefit of voice processing. At the

same time, the human voice is sufficiently ubiquitous that a

preference for voices could have emerged from auditory

learning alone. There is a large body of evidence that musi-

cal training changes both auditory perception and electro-

physiological responses (see Kraus and Chandrasekaran,

2010 for a review) with some evidence of causality (Hyde

et al., 2009; Moreno et al., 2009). We have previously

shown that auditory learning of complex features is fast, reli-

able, and efficient (Agus et al., 2010). It seems thus highly

likely that experience changes the way we perceive voices

and contributes to their efficient categorization.

Finally, our results extend the methods generally used to

investigate voice processing. Although accurate performance
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on tasks as complex as speech perception can be achieved

with a broad range of impoverished stimuli (e.g., Remez et
al., 1981; Shannon et al., 1995; Gilbert and Lorenzi, 2006),

this may not reflect the extent to which natural voice proc-

essing is disrupted. Here, when the bulk of cues were pre-

served in an auditory chimera, listeners were able to

correctly categorize the sounds, but not as quickly. This has

implications for auditory prostheses, such as hearing aids

and cochlear implants: Minor auditory transformations or

distortions may slow speech processing, adding to the cogni-

tive load, even if they have little or no effect on speech

intelligibility.
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